Name: $\qquad$

## Going the (Horizontal) Distance: An Inquiry Activity SPH4C

Materials: metre stick, stopwatch, masking tape
Procedure: The formula you will use to calculate your work done while accelerating is:

$$
W=\Delta E_{k}=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}
$$

Since you will be starting from rest, $\quad v_{1}=0$ and therefore $W=\frac{1}{2} m v_{2}^{2}$
What is your mass in kilograms? $\qquad$
Mark your starting position with masking tape. Measure 10 metres down the hallway and mark your finish line with another piece of masking tape. This is your distance $\Delta d$.

Time how long (in seconds) it takes you to run the 10 metres from a standing start. This is your time $\Delta t$. (Cross the 10 metre mark at your maximum speed. Do not slow down as you approach it.) Repeat this measurement 3 times and calculate your average time.

Table 1: Time to run 10 metres from a standing start

| Time for Trial 1 <br> $(s)$ | Time for Trial 2 <br> $(s)$ | Time for Trial 3 <br> $(s)$ | Time for Trial 4 <br> $(s)$ | Average Time <br> $(s)$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |

Since your initial speed was zero, your final speed is twice your average speed: (Use your average time in this calculation.)

$$
v_{2}=2 v_{\text {avg }}=2\left(\frac{\Delta d}{\Delta t}\right)=
$$

Use this speed to calculate your work done in Joules:
(Remember to square your speed.)

$$
W=\frac{1}{2} m v_{2}^{2}=
$$

Use this work done to calculate your power output in Watts:

$$
P=\frac{W}{\Delta t}=
$$

To convert your work done while accelerating to Calories:

$$
W=\quad J \times\left(\frac{1 C a l}{4186 J}\right)=\_\quad C a l
$$

To convert your power while accelerating to horsepower:

$$
P=\_\quad W \times\left(\frac{1 h p}{745.7 W}\right)=\_h p
$$

Discussion:
Why did we use a short distance and not a longer distance (such as 100 m ) in this activity?
$\qquad$
$\qquad$
$\qquad$
And, again, how do we burn most of our food Calories consumed?
$\qquad$
$\qquad$


