Name:

Going the (Horizontal) Distance: An Inquiry Activity SPH4C

Materials: metre stick, stopwatch, masking tape

Procedure: The formula you will use to calculate your work done while accelerating is:

$$W = \Delta E_k = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$

Since you will be starting from rest, $v_1 = 0$ and therefore $W = \frac{1}{2}mv_2^2$

What is your mass in kilograms? _____

Mark your starting position with masking tape. Measure 10 metres down the hallway and mark your finish line with another piece of masking tape. This is your distance Δd .

Time how long (in seconds) it takes you to run the 10 metres from a standing start. This is your time Δt . (Cross the 10 metre mark at your maximum speed. Do not slow down as you approach it.) Repeat this measurement 3 times and calculate your average time.

Table 1: Time	to run 10	metres from	a standing start
---------------	-----------	-------------	------------------

Time for Trial 1	Time for Trial 2	Time for Trial 3	Time for Trial 4	Average Time
(s)	(s)	(s)	(s)	(s)

Since your initial speed was zero, your final speed is twice your average speed: (Use your average time in this calculation.)

$$v_2 = 2v_{avg} = 2\left(\frac{\Delta d}{\Delta t}\right) =$$

Use this speed to calculate your work done in Joules: (Remember to square your speed.)

$$W = \frac{1}{2}mv_2^2$$
 =

Use this work done to calculate your power output in Watts:

$$P = \frac{W}{\Delta t} =$$

To convert your work done while accelerating to Calories:

$$W = \underline{\qquad} J \times \left(\frac{1Cal}{4186J}\right) = \underline{\qquad} Cal$$

To convert your power while accelerating to horsepower:

$$P = \underline{\qquad} W \times \left(\frac{1 h p}{745.7 W}\right) = \underline{\qquad} h p$$

Discussion:

Why did we use a short distance and not a longer distance (such as 100 m) in this activity?

And, again, how do we burn most of our food Calories consumed?

